AMS 129 Youngjun Lee

Welcome to AMS 129

- Youngjun Lee
 - PhD Candidate, Applied Mathematics
- Email: <u>ylee109@ucsc.edu</u>
- Office Hours
 - TBD
 - or by appointment

Welcome to AMS 129

- Lectures
 - MWF 09:20AM -- 10:25AM
- Sections (TA: Sky Trigueiro)
 - Th 01:30PM -- 03:00PM
 - F 11:00AM -- 12:30PM
 - NO lab sections in the first week

Disclaimers

- This course is not a CS/CE course
 - NO software engineering
 - NO hardware architecture
- We will focus on **how** to use scientific tools

Grading

- Homework (60%); Final Project (40%)
- All homework and the final project are individual project.
 - Do not share your code(s) with others.
- No late submission.

Syllabus

- Week 1 -- 2
 - Linux basic commands
 - Version controls
- Week 3 -- 4
 - Fortran programming
 - Compiler, Makefile
 - I/O, Debugger

Syllabus

- Week 5 -- 8
 - Python programming
 - Sphinx
 - Jupyter notebook, NumPy, Pandas, Matplotlib
- Week 9 -- 10
 - C programming
 - Other useful scientific computing tools

Googling

- Googling is highly recommended in this course
 - But please do not just copy the solutions.
 - Know what you are doing
- YouTube is another great place to find some tutorials

Linux

- This course is premised on UNIX-like computers
 - Linux (Ubuntu, Fedora, openSUSE, ...)
 - macOS

Image from Wikipedia.org

Linux

- If you have only Windows machine, you have couple of options
 - Install Linux on separate drive and dual boot
 - Or you can use USB drive stick but unstable
 - Install Linux on virtual machine
 - VirtualBox (<u>https://www.virtualbox.org</u>) is free
 - Use Cygwin (<u>https://www.cygwin.com</u>) not recommended
 - Use campus resources and store the file personally

Package Managers

- Install, Remove (mostly) command line programs
- Most Linux systems have their own package managers
 - apt for Ubuntu
 - dnf for Fedora
- If you are using macOS you need to install either
 - Homebrew (<u>https://brew.sh</u>) recommended
 - Macport (<u>https://www.macports.org</u>)

Shell Commands

- man
 - Move: j, k or ctrl+d, ctrl+u
 - Exit: q
- IS
- mv
- cp
- rm
- cat

Shell Commands

- mkdir
- cd
- touch
- find
- grep

Operators

- Redirecting
 - > : redirect the output to a new file
 - >> : redirect the output to a existing file and append it
- Piping
 - |: feed the output of left as input to program of right
 - Is | grep [pattern]
 - Is | sort

Operators

- Multiple line commands
 - A; B : run A and then B, regardless of success of A
 - A && B : run B if A succeeded
 - A || B : run B if A failed

Bash

- Bash is an Unix Shell program
- If you opened terminal on macOS or Linux, it is (mostly) a Bash
- You can choose either
 - Bash
 - zsh
 - csh
 - ...

Bash

- Environment variables for Bash
 - HOME
 - indicate home directory
 - PATH
 - indicate search path for commands
 - USER
 - current user name

- Bash configuration file (.bashrc) is stored in your home directory
 - cd ~ (equiv. cd \$HOME)
 - vim .bashrc
- Wait.. vim?

Editor

- Two most popular (command line) editors
 - vim (or vi)
 - Emacs

Editor

- Yes, you can use modern, graphical editor such as
 - sublime text (<u>https://www.sublimetext.com</u>)
 - atom (<u>https://atom.io</u>)
 - visual studio code (<u>https://code.visualstudio.com</u>)
- But.. you need to use vim/Emacs when you are doing something remotely
 - ssh ylee109@sftp.ucsc.edu

Bash

- .bashrc file is a script that running every time you launch the Bash
- alias
 - alias 'll'='ls -al'
 - alias '..'='cd ..'
- export
 - export PATH=/usr/local/bin:\$PATH

- A lot of things could be easier with modifying .bashrc
- You can find some great examples of .bashrc
 - github.com

Version Control

- Case 1
 - You are involving a large project with many others. You and your teammates have to modify a single project at once.
- Case 2
 - You have your own project, but you have to work in many different places.
- Case 3
 - The project need to be published in many different versions.

- git
 - The most popular version control solution
 - Invented by a Linus Torvalds to control Linux project
 - Decentralized
- svn
 - Formally used solution
 - Centralized

- git init
- git status
- git add
- git commit
- git log
- git diff

- You can add remote server to store the file online (or cloud)
 - git remote add [nickname] [address]
- If you want to see the remote server
 - git remote -v

- Three options for git server
 - github.com
 - Non-private server for free accounts
 - <u>bitbucket.com</u>
 - Private server for free accounts
 - MakeYourOwnServer

- git push
- git pull

- If you want to revert ALL changes in LOCAL
 - git fetch origin master && git reset --hard

- git clone
 - from server

Remote System

- You can login to another system.
 - ssh [YourID]@[ServerAddress]
 - eg) ssh [CruzID]@sftp.ucsc.edu (with Blue password)

Remote System

- If you want to copy a file,
 - scp [File] [YourID]@[ServerAddress]
 - eg) scp ./.bashrc ylee109@sftp.ucsc.edu:~/